1

NUCLEOSIDE PHOSPHORAMIDATE PRODRUGS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 13/609,614, filed Sep. 11, 2012, which is a continuation of U.S. patent application Ser. No. 13/099,671, filed May 3, 2011, which issued as U.S. Pat. No. 8,334,270 on Dec. 18, 2012, which is a continuation of U.S. patent application Ser. No. 12/053,015, filed Mar. 21, 2008, which issued as U.S. Pat. No. 7,964,580 on Jun. 21, 2011, which claims the benefit of U.S. Provisional Application No. 60/982,309, filed Oct. 24, 2007, and U.S. Provisional Application No. 60/909,315, filed Mar. 30, 2007. The entire contents of the aforementioned applications are incorporated herein by reference in their entirety.

INCORPORATION OF SEQUENCE LISTING

The Sequence Listing filed on Oct. 10, 2012 (in U.S. patent application Ser. No. 13/609,614, filed Sep. 11, 2012), created on Sep. 30, 2012, named 039560538002_ST25.txt, having a size in bytes of 1,091 B, is hereby incorporated by reference ²⁵ herein in its entirety.

FIELD OF INVENTION

The present invention pertains to nucleoside phosphoramidates and their use as agents for treating viral diseases. These compounds are inhibitors of RNA-dependent RNA viral replication and are useful as inhibitors of HCV NS5B polymerase, as inhibitors of HCV replication and for treatment of hepatitis C infection in mammals. The invention provides novel chemical compounds, and the use of these compounds alone or in combination with other antiviral agents for treating HCV infection.

BACKGROUND

Hepatitis C virus (HCV) infection is a major health problem that leads to chronic liver disease, such as cirrhosis and hepatocellular carcinoma, in a substantial number of infected individuals, estimated to be 2-15% of the world's population. 45 There are an estimated 4.5 million infected people in the United States alone, according to the U.S. Center for Disease Control. According to the World Health Organization, there are more than 200 million infected individuals worldwide, with at least 3 to 4 million people being infected each year. 50 Once infected, about 20% of people clear the virus, but the rest can harbor HCV the rest of their lives. Ten to twenty percent of chronically infected individuals eventually develop liver-destroying cirrhosis or cancer. The viral disease is transmitted parenterally by contaminated blood and blood 55 products, contaminated needles, or sexually and vertically from infected mothers or carrier mothers to their offspring. Current treatments for HCV infection, which are restricted to immunotherapy with recombinant interferon-α alone or in combination with the nucleoside analog ribavirin, are of lim- 60 ited clinical benefit. Moreover, there is no established vaccine for HCV. Consequently, there is an urgent need for improved therapeutic agents that effectively combat chronic HCV infection.

The HCV virion is an enveloped positive-strand RNA virus 65 with a single oligoribonucleotide genomic sequence of about 9600 bases which encodes a polyprotein of about 3,010

2

amino acids. The protein products of the HCV gene consist of the structural proteins C, E1, and E2, and the non-structural proteins NS2, NS3, NS4A and NS4B, and NS5A and NS5B. The nonstructural (NS) proteins are believed to provide the catalytic machinery for viral replication. The NS3 protease releases NS5B, the RNA-dependent RNA polymerase from the polyprotein chain. HCV NS5B polymerase is required for the synthesis of a double-stranded RNA from a singlestranded viral RNA that serves as a template in the replication cycle of HCV. Therefore, NS5B polymerase is considered to be an essential component in the HCV replication complex (K. Ishi, et al., Heptology, 1999, 29: 1227-1235; V. Lohmann, et al., Virology, 1998, 249: 108-118). Inhibition of HCV NS5B polymerase prevents formation of the double-stranded HCV RNA and therefore constitutes an attractive approach to the development of HCV-specific antiviral therapies.

HCV belongs to a much larger family of viruses that share many common features.

Flaviviridae Viruses

The Flaviviridae family of viruses comprises at least three distinct genera: pestiviruses, which cause disease in cattle and pigs; flavivruses, which are the primary cause of diseases such as dengue fever and yellow fever; and hepaciviruses, whose sole member is HCV. The flavivirus genus includes more than 68 members separated into groups on the basis of serological relatedness (Calisher et al., J. Gen. Virol, 1993, 70, 37-43). Clinical symptoms vary and include fever, encephalitis and hemorrhagic fever (Fields Virology, Editors: Fields, B. N., Knipe, D. M., and Howley, P. M., Lippincott-Raven Publishers, Philadelphia, Pa., 1996, Chapter 31, 931-959). Flaviviruses of global concern that are associated with human disease include the Dengue Hemorrhagic Fever viruses (DHF), yellow fever virus, shock syndrome and Japanese encephalitis virus (Halstead, S. B., Rev. Infect. Dis., 1984, 6, 251-264; Halstead, S. B., Science, 239:476-481, 1988; Monath, T. P., New Eng. J. Med, 1988, 319, 64 1-643).

The pestivirus genus includes bovine viral diarrhea virus (BVDV), classical swine fever virus (CSFV, also called hog cholera virus) and border disease virus (BDV) of sheep (Moennig, V. et al. *Adv. Vir. Res.* 1992, 41, 53-98). Pestivirus infections of domesticated livestock (cattle, pigs and sheep) cause significant economic losses worldwide. BVDV causes mucosal disease in cattle and is of significant economic importance to the livestock industry (Meyers, G. and Thiel, H. J., Advances in Virus Research, 1996, 47, 53-118; Moennig V., et al., Adv. Vir. Res. 1992, 41, 53-98). Human pestiviruses have not been as extensively characterized as the animal pestiviruses. However, serological surveys indicate considerable pestivirus exposure in humans.

Pestiviruses and hepaciviruses are closely related virus groups within the Flaviviridae family. Other closely related viruses in this family include the GB virus A, GB virus A-like agents, GB virus-B and GB virus-C (also called hepatitis G virus, HGV). The hepacivirus group (hepatitis C virus; HCV) consists of a number of closely related but genotypically distinguishable viruses that infect humans. There are at least 6 HCV genotypes and more than 50 subtypes. Due to the similarities between pestiviruses and hepaciviruses, combined with the poor ability of hepaciviruses to grow efficiently in cell culture, bovine viral diarrhea virus (BVDV) is often used as a surrogate to study the HCV virus.

The genetic organization of pestiviruses and hepaciviruses is very similar. These positive stranded RNA viruses possess a single large open reading frame (ORF) encoding all the viral proteins necessary for virus replication. These proteins are expressed as polyprotein that is co- and post-translationally processed by both cellular and virus-encoded proteinases to